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Abstract. Photoabsorption cross-sections for all sodium cluster ions, Na+
n , with n ≤ 64, have been mea-

sured at a temperature of about 105 K. The size dependence of the peak positions and widths is discussed.
Triaxial deformations are unequivocally observed. The moments of the optical response are calculated from
the data and their size dependence discussed. The width of the plasmon peak is not understood.

PACS. 36.40.Gk Plasma and collective effects in clusters – 36.40.Mr Spectroscopy and geometrical struc-
ture of clusters

1 Introduction

Experimental [1–7] and theoretical [8–20] studies of al-
kali clusters have made them the best understood ones
today. This was made possible by a very good interaction
between theory and experiment, and the present investi-
gation was started to further deepen this interaction. The
optical response of mass selected sodium cluster ions was
measured with better signal to noise compared to earlier
investigations. This was made possible by an experimental
arrangement that allowed to measure the optical response
of many clusters at the same time. Moments of the optical
response are calculated from which additional useful infor-
mation can be obtained. The main conclusion of this paper
is that the maxima of the absorption peaks and some mo-
ments are well understood, while a detailed understanding
of the width of the spectral lines is still lacking.

The jellium model has been immensely popular for the
calculation of optical spectra [8–11,15–20]. Within this
model the valence electrons are treated as completely free,
only caged by a constant positively charged background.
On the other side, quantum chemical calculations which
take into account the positions of the ions are expensive in
theoretical input and computing time, but lead to the best
results for very small, cold clusters [12–14]. The beginning
of an overlap of the two theories has been achieved by
including pseudopotentials to the jellium calculation [15–
18]. Also the close analogies to nuclear physics have been
very inspiring [11,19,20].
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2 Experiment

The aim of this experiment was to measure photoabsorp-
tion cross-sections at one constant temperature as a func-
tion of two parameters: 1) the photon energy, and 2) the
cluster size. Several measures have been taken, in order to
shorten the time for the data taking. A scheme has been
published earlier [21], which allowed to shorten this time
by a factor of forty or so. Another considerable improve-
ment has been described very recently [22]. The method,
which is briefly sketched below, leads to an additional im-
provement of about a factor of 25, so that both improve-
ments taken together give a reduction of the measuring
time by about three orders of magnitude [23].

In all earlier experiments of this group, laser and clus-
ter beam were perpendicular, so that the photons from a
pulsed dye laser interacted with only one cluster size at
a time. By aligning laser and cluster beam collinearly, as
shown in Figure 1, the laser beam interacts with many
clusters at the same time. All clusters which are in the
first field-free drift space of the time-of-flight mass spec-
trometer can be measured simultaneously. The collinear
arrangement has a second advantage: the overlap between
laser and cluster beam is 100%, which makes it much eas-
ier to extract the photoabsorption cross-section from the
data, as explained in reference [21,24].

The intensity is measured with (I) and without (I0)
laser interaction. For a complete overlap one has

I/I0 = exp(−σφτ) , (1)

where φ and τ are the laser fluence and pulse length, re-
spectively, and σ is the photofragmentation cross-section.
The product φτ can be measured absolutely by a pyroelec-
tric detector (P in Fig. 1). There is a specific difficulty in
applying this photofragmentation spectroscopy to larger
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Fig. 1. Schematic diagram of the experiment. Clusters of a
temperature of about 105 K are produced in a cluster ion
source (CIS). The clusters are deflected by a pulsed acceler-
ator (Ac) and by two reflectrons (Ref 1 and Ref 2) onto the
detector D. The beam from the dye laser is enlarged and over-
lapped collinearly with the cluster beam. One laser pulse in-
teracts with many different cluster sizes, which leads to a large
reduction of the measuring time. W1 and W2 = windows for
the laser beam, N = neutral density filter, A = diaphragm, and
P = pyroelectric photon detector.
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Fig. 2. Number of photons of ~ω = 2.8 eV necessary to start
the fragmentation of Na+

n thermalized at 105 K. The open cir-
cles are obtained from a fit of equation (2) to the data. The
triangles are from an experiment, where the temperature de-
pendence of the photofragmentation spectra was used to deter-
mine thermodynamic properties of clusters [28,29]. One photon
is enough to start fragmentation for cluster sizes up to twenty
atoms, above n = 40 more than two are necessary.

clusters. If the cluster is cold, the absorption of one pho-
ton might not heat it enough to induce fragmentation.
Whether this effect plays a role is easy to check experi-
mentally. If one photon is enough the intensity I falls ex-
ponentially with laser intensity. If two photons are needed
log[I(φτ)] becomes parabolic for small φτ .

More specifically, the electronic excitation induced by
the photon relaxes fast into vibrations and leads to a heat-
ing of the cluster from a temperature of T0 ≈ 105 K, to
T0 + δT , where kBδT ≈ ~ω/(3n – 6). For ~ω = 2.8 eV and
a cluster composed of n = 25 atoms one has δT ≈ 470 K,
which is not sufficient to fragment the cluster on the time

scale (about 10 µs) of the experiment. The absorption
of two photons increases the temperature by about 2δT ,
which is sufficient for clusters with n ≤ 40 to fragment,
as shown in Figure 2. One can solve the corresponding
rate equations, and using the assumption that σ(T0) =
σ(T0 + δT ), one obtains [25,26]:

I/I0 = (1− η) exp(−σφτ) + η(1 + σφτ) exp(−σφτ) ,
(2)

where η is the fraction of clusters needing two photons for
fragmentation. From the temperature dependence of the
optical absorption one can deduce that the assumption
σ(T0) ≈ σ(T0 + δT ) is valid for n ≥ 20 [22]. Equation (2)
can be generalized to the absorption of many photons,
but the number of free parameters becomes too large. For
very large clusters it is probably advantageous to use the
method developed by the Orsay group [27].

Figure 2 shows the mean number of photons of ~ω =
2.8 eV which a cluster of 105 K needs to absorb, before it
starts to evaporate atoms on a time scale of a few micro-
seconds. This is the interval between the laser pulse and
the time the cluster enters the first reflector (Ref 1 in
Fig. 1). It is obvious that beginning with about cluster size
forty, even two photons are not always enough to induce
evaporations. As a result the measured cross-sections are
somewhat too small for n ≥ 40. Nevertheless, also the
cluster sizes up n = 64 were measured, as it presented
hardly any additional work with the present set-up. The
data points for n = 41, 93, and 139 in Figure 2 have been
obtained using the calorimetric techniques developed to
study cluster melting [28,29].

A gas aggregation cluster ion source with internal elec-
tric discharge was used in this experiment. It was em-
ployed without the thermalization stage, thus as shown
in Figure 3.14 of reference [30]. A carefully shielded ther-
mocouple measures a temperature of 105 K near the exit
of the source, which was taken as the temperature of the
clusters.

3 Photoabsorption cross-sections

Figures 3 to 6 show photoabsorption cross-sections in the
size range of 3 to 64 atoms per cluster. A small part of
the data has been measured earlier [25,31], both sets of
data being in perfect agreement. The data agree also with
earlier measurements of the Orsay group [32] (only the
small dip observed in the spectrum for Na+

21 was not seen
here) and with the data of the Copenhagen group [3]. The
main difference to these earlier experiments is that 1) the
signal-to-noise ratio is much higher here (due to the im-
provements discussed above) and 2) clusters of a known
temperature are studied.

For the small cluster sizes (n = 3-9), we observe sin-
gle, well separated resonances, which could be well fitted
by Gaussians. As discussed earlier, the peaks are inter-
preted as vibrationally broadened electronic transitions
of a Na+

n molecule [12,25,33]. For sodium clusters, vibra-
tional structure could not be resolved. But for Li-clusters
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Fig. 3. Photoabsorption cross-section as a function of the pho-
ton energy. Plotted is the absolute value per valence electron
for cluster sizes between n = 3 and 14.

[34,35] we have seen some oscillations which could be
interpreted as vibrational structure. The data presented
here are in good to fair agreement with Quantum Chem-
istry type ab initio calculations, as discussed elsewhere in
detail [12,20,25].

The number of electronic lines increases with cluster
size and in the size range n = 10 to 15 the lines begin
to overlap. For even bigger clusters the single electronic
resonances can no longer be resolved. Instead we observe
envelopes which can be characterized by one, two, or three
Lorentzian peaks, which were fitted by

σ(E) =
~e2

mecε0

3∑
i=1

fiE
2Γi

(E2 −E2
i )2 + (EΓi)2

, (3)

whereme is the bare electronic mass, and E = ~ω the pho-
ton energy. The oscillator strength fi, the peak positions
Ei and the width of the single resonances Γi were used
as fit parameters with the restriction that the oscillator
strength of all the resonances is identical (f1 = f2 = f3).
When two resonances were sufficient to describe the spec-
trum, f1 = 2f2 was demanded. Fit curves are included in
Figures 3 to 6. The numerical values are given in Table 1.
The peak positions are given by the vertical sticks in Fig-
ures 3 to 6 and in Figure 8a.

The larger the cluster size, the stronger is an addi-
tional broad absorption on the high-energy side of the op-
tical spectrum. This can have two origins: 1) it could be

Fig. 4. As in Figure 3 but for n = 15 to 26.

Fig. 5. As in Figure 3 but for n = 27 to 46.
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Table 1. Fitting parameters for the optical data, as given by
equation (3).

n E1 Γ1 E2 Γ2 E3 Γ3

9 2.697 0.150 2.963 0.137 - -
10 2.916 0.328 2.406 0.396 - -
11 2.860 0.371 2.459 0.514 - -
12 2.786 0.252 2.299 0.208 - -
13 2.707 0.180 2.345 0.206 3.110 0.283
14 2.827 0.357 2.236 0.432 - -
15 2.852 0.258 2.307 0.417 - -
16 2.518 0.348 3.023 0.335 - -
17 2.581 0.330 2.956 0.353 - -
18 2.621 0.263 2.926 0.251 - -
19 2.665 0.194 2.889 0.242 - -
20 2.695 0.238 2.776 0.444 - -
21 2.715 0.181 2.617 0.467 - -
22 2.705 0.203 2.665 0.576 - -
23 2.736 0.253 2.507 0.709 - -
24 2.760 0.301 2.502 0.457 - -
25 2.906 0.278 2.480 0.424 2.716 0.186
25 2.908 0.282 2.481 0.428 2.717 0.187
26 2.856 0.291 2.477 0.400 - -
27 2.845 0.312 2.486 0.307 - -
28 2.840 0.296 2.533 0.354 - -
29 2.733 0.239 2.495 0.321 2.957 0.335
29 2.820 0.506 2.568 0.422 - -
30 2.935 0.280 2.489 0.286 2.723 0.204
30 2.763 0.318 2.496 0.310 - -
31 2.792 0.420 2.537 0.347 - -
31 2.919 0.284 2.485 0.262 2.714 0.202
32 2.737 0.315 2.559 0.284 - -
32 2.706 0.192 2.539 0.263 2.909 0.272
33 2.702 0.273 2.546 0.252 - -
34 2.616 0.206 2.753 0.248 - -
35 2.599 0.242 2.769 0.232 - -
36 2.724 0.276 2.587 0.191 - -
37 2.630 0.243 2.760 0.249 - -
38 2.636 0.259 2.768 0.261 - -
39 2.620 0.236 2.745 0.223 - -
40 2.704 0.263 2.611 0.197 - -
41 2.626 0.239 2.726 0.357 - -
42 2.702 0.348 2.603 0.192 - -
43 2.697 0.407 2.607 0.259 - -
44 2.730 0.450 2.610 0.270 - -
45 2.765 0.581 2.632 0.297 - -
46 2.852 0.674 2.649 0.329 - -
46 2.718 0.291 2.577 0.404 2.983 0.423
47 2.685 0.207 2.518 0.351 2.889 0.284
47 2.814 0.634 2.640 0.312 - -
48 2.836 0.612 2.605 0.364 - -
48 2.924 0.305 2.507 0.337 2.700 0.248
49 2.805 0.460 2.562 0.360 - -
49 2.694 0.222 2.490 0.295 2.882 0.234
50 2.711 0.303 2.554 0.357 2.938 0.361
50 2.832 0.537 2.601 0.330 - -
51 2.820 0.549 2.616 0.344 - -
52 2.821 0.513 2.622 0.322 - -
53 2.695 0.387 2.915 0.439 - -
54 2.712 0.328 2.912 0.389 - -
55 2.721 0.313 2.894 0.358 - -
56 2.835 0.369 2.697 0.230 - -
57 2.711 0.250 2.862 0.232 - -
58 2.835 0.310 2.702 0.196 - -
59 2.737 0.243 2.885 0.242 - -
60 2.845 0.299 2.701 0.229 - -
61 2.844 0.329 2.672 0.240 - -
62 2.850 0.356 2.658 0.258 - -
63 2.830 0.354 2.629 0.245 - -
64 2.679 0.366 2.906 0.281 - -

Fig. 6. As in Figure 3 but for n = 47 to 64. The last spectrum,
marked “Mie”, has been calculated as discussed in the context
of equation (6).

the beginning of the volume plasmon modes [7–9], or 2)
it could be the microscopic analogue of the bulk inter-
band transition (see Section 6.1 below). The data on the
high-energy side cannot be described by a Lorentzian or
Gaussian peak shape and thus were neglected for the fit
to equation (3).

4 Discussion of the optical spectrum

4.1 Peak positions

In the jellium model, one has a closed electronic shell
for n = 8, 20, 40, 58 . . . valence electrons. This gives a
spherical shape for the cluster, and one dominant line in
the spectrum. Very deformed, asymmetric structures have
been calculated for open shell clusters [36,37]. For the in-
terpretation of the optical spectra of the larger clusters it
has been sufficient so far to treat the cluster as a spheroid.
The data suggest that often two axes are identical (or dif-
fer not too much from another). This gives either a prolate
(cigar-like) or oblate (disc-like) deformation. If two of the
principle axes are identical, the resonances along them are
degenerate in energy and the optical peak thus of about
double intensity. As the resonance parallel to the longer
axis has a lower frequency, one can deduce the cluster’s
shape from a simple inspection of the optical spectrum.
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Fig. 7. Cluster sizes between 16 and 20 are oblate, above n =
23 they are prolate. The spherical shape of the Na+

21 cluster
leads to the narrowest line.

An example is shown in Figure 7. For the spherical sym-
metric Na+

21 one has one single peak, and a change-over
from an oblate at smaller to a prolate geometry at larger
cluster sizes.

The location of the peak maxima up to n = 66 are
given in Figure 8a. If the more intense peak (marked by a
full dot) has a higher energy, one has a prolate structure,
and vice versa. There is a change from oblate to prolate
geometry at each closed shell, and also one in between
closed shells. For some clusters one could also make a fit
with three peaks of equal intensity, corresponding to a
triaxial structure. These are indicated by three small open
dots in Figure 8a. Triaxial shapes have been calculated for
neutral sodium clusters using the jellium approximation in
references [9,38–40]. These authors calculated the ground
state and find triaxial deformations for N = 11–13, 23–25,

Fig. 8. Peak energies as a function of cluster size are shown
in the upper figure (a). The energies have been obtained by a
Lorentz-fit to the data (see Eq. (3)). The position of the intense
peak is given by a full circle, the position of the less intense
peak by a large open circle. Three small open circles are shown
where a three peak fit is possible. Closed electronic shells are
indicated by the vertical lines. The lower figure (b) shows the
deformation parameter ∆ of equation (4), plotted against the
cluster size. Full triangles indicate oblate, open circles prolate
deformations.

61–65 . . . valence electrons. In the optical spectrum, we
find an indication of a possible triaxial shape for N = 12,
24, 28–31, 44–48 valence electrons.

The Nillson-Clemenger model [41] predicts that the in-
verse ratio of the two axes R1 and R2 of a deformed cluster
equals the ratio of the resonance energies. The connection
between the energetic splitting of the resonances and the
deformation is given by

∆ =
∆R

R̄
= 2
|R1 −R2|

R1 +R2
= 2
|E2 −E1|

E1 +E2
. (4)

The result is shown in Figure 8b. The deformation ∆ is
smallest—but not zero—for spherical clusters. Many au-
thors have derived results similar to equation (4) as dis-
cussed in detail in reference [3].

4.2 Width of a single line

Contrary to the peak positions, the width of the spectrum
is not well understood so far. The only general agreement
seems to be that the total width of a spectrum cannot
be due to a lifetime effect. This is very evident from the
discussion above and an inspection of Figure 8b, which
shows that the geometric deformations of a single cluster
has a large contribution to the overall linewidth.

It has been discussed above, that save for the peak
at the high-energy side, the experimental peaks are well
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Fig. 9. Mean single peak widths as a function of cluster size.
Note, that all spherical clusters and the Mie plasmon have a
line width of about 0.2 eV.

represented by Lorentzians. Figure 9 shows the Γ values
as defined by equation (3), i.e. the width of each single line
in the spectrum is plotted. The result is surprising. There
is no systematic shift with cluster size, if one disregards
the shell effects. Also the value for the Mie plasmon lies
in the same range. As the Γ values are obtained from a
Lorentz fit, one is tempted to interpret the width as being
due to a lifetime τ :

Γ = ~/τ . (5)

With ~ = 0.656 fs·eV one obtains lifetimes of the order of
1.5 to 3.5 fs for a linewidth of 0.2 to 0.4 eV. This value
seems to be too short, as discussed in more detail below.

4.3 Asymptotic limit

The classical equation for light absorption by a small
sphere of radius R reads [42,43]:

σ(~ω) =
4πω

c
R3Im

(
ε(ω)− 1

ε(ω) + 2

)
. (6)

Here Im stands for the imaginary part, and ε(ω) is the
complex dielectric function. Using the experimental ε(ω)
for sodium [44], one obtains the absorption profile given
as the last curve in Figure 6 (marked Mie). The curve
has a maximum at EMie = 3.27 eV; note that this is dif-
ferent from the pure jellium result of 3.41 eV. The small
but significant difference of 140 meV is attributed to core
polarization effects, i.e. the interaction of the 3s-electrons
with the much stronger bound core electrons [45]. This ef-
fect is not incorporated in the jellium model, but could be
taken care of by an effective electron mass. The full width
at half maximum is 0.173 eV which corresponds to a vari-
ance of δ = 0.196 (for a definition of δ see Eq. (12)). The
oscillator strength between 1.5 and 3.7 eV is f = 0.77
per electron. These asymptotic values are included in
Figures 10 and 11.

5 Sum rules and moments

Independent of the specific form of the optical response,
there is additional valuable information in the integrals of
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Fig. 10. Oscillator strength between 1.5 and 3.7 eV as a func-
tion of cluster size, calculated by equation (8). A value of only
0.77 is obtained for the Mie plasmon in this limited energy
range, due to the cut-off imposed by the upper limit of the
photon energy used. Note, that starting with Na+

26 up to at
least Na+

60 all odd cluster sizes show a significantly higher os-
cillator strength in the measured range than the even ones. The
estimated error for the smaller clusters is below 10%, resulting
mainly from the fact that laser beam profile is not completely
flat.

the spectra [9]. The moment Mk is defined as [46]

M0 =

∫ ∞
0

σ(E)dE for k = 0 ,

Mk =

∫ ∞
0

Ekσ(E)dE/M0 for k > 0 . (7)

Experimental information for several moments will be dis-
cussed now.

5.1 Oscillator strength

For k = 0 one obtains the Thomas-Reiche-Kuhn sum rule
for the oscillator strength f , which states that the zeroth
moment is proportional to the number N(e−) of electrons.

f =
2mecε0

π~e2
M0 =

0.911

Å
2
eV

∫
σdE = N(e−) . (8)

This is an exact equation giving f(total) = 11 if the in-
tegral is extended over all photon energies. In the experi-
ment we have measured σ(E) only between 1.5 and 3.7 eV,
so the integral can only be extended over this finite energy
interval, where the absorption of the 3s-electrons occurs.
In all the integrals of this section these finite limits are
implied.

Under certain conditions one can decompose the sum
rule and obtain the oscillator strength due to just one elec-
tron. For sodium, with its 1s22s22p63s electronic struc-
ture, one writes:

f(total) = f(1s, 2s, 2p) + f(3s) . (9)

The approximation f(3s) = 1 (per atom) is very good for
sodium as: i) the optical spectrum due to the 3s-electrons
is well separated from that of the other electrons, and
ii) the interaction of the 3s electrons with the other elec-
trons can be well approximated by a local pseudopoten-
tial [47].
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Fig. 11. (a) Mean peak energies of the optical spectra
(Eq. (10)). Closed electronic shells are indicated by verti-
cal lines. (b) Polarizability per 3s electron of neutral (from
Ref. [48]) and charged clusters (Eq. (11)). The plot for neu-
tral clusters has been shifted by one mass, so that clusters with
the same number of valence electrons are vertically above one
another.

From the many jellium calculations one gets exactly
f = 1 per 3s electron for sodium. Integrating the exper-
imental spectra one obtains, for n ≥ 15, that more than
85% of the maximal oscillator strength contributes to the
experimental data. The results are given in Figures 10.
We expect that the remaining 15% are hidden in the en-
ergy range above 3.7 eV, the highest energy used in this
experiment. It can be seen from Figure 3 to 6 that the
cross-section is not zero at the highest photon energies
used experimentally. This is in agreement with the fact,
that the oscillator strength for the limiting Mie plasmon
is also only f(R →∞) = 0.77 per valence electron if one
takes into account the limited photon range of this exper-
iment.

This discussion does not apply to the very small sizes.
For n = 2 and 3 the photon reaches states which to not
dissociate in the time scale of the experiment; i.e. the
dimer and trimer have only a probability of about 1/3 or
2/3 to dissociate, respectively. This can be understood in
term of symmetry arguments as discussed elsewhere [25].

5.2 Mean transition energy

The first moment, M1, is proportional to the mean tran-
sition energy:

〈~ω〉 = M1 . (10)

Experimental values of are shown in Figure 11a. As could
be expected, the stronger bound electrons in the closed
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Fig. 12. Mean square deviation δ of the optical spectra as
defined by equation (12).

shell clusters have a higher mean resonance energy com-
pared to the electrons in open shell clusters of similar size.
It has been shown in reference [22] hat this mean transi-
tion energy is nearly independent of temperature.

5.3 Polarizability

The polarizability α is proportional to the minus second
moment:

α =
e2
~

2

m
M−2 . (11)

Experimental results are shown in Figure 11b. They also
show some structure due to electronic shell closings. In-
cluded in Figure 11b are directly measured polarizabili-
ties of the Knight group for neutral sodium clusters [48].
For N(e−) ≥ 17 the two polarizabilities agree. Only for
smaller clusters, is the α(neutral cluster) higher than that
for charged ones. This is physically plausible. The extra
charge leads to a stronger bond of the electrons, which
are thus less polarizable by an external electric field. The
smaller the cluster becomes, the more pronounced this ef-
fect becomes. For the extrapolation to R →∞ one again
expects a smooth R−1 dependence.

It has been discussed above that clusters with more
than 40 atoms need more than two photons to fragment.
This leads to a nearly negligible systematic error for the
moments. For Na+

64 the mean excitation energy is slightly
too big, and the polarizability slightly to small; all errors
being smaller then 3%.

5.4 Total width of the spectrum

The variance δ around M1

δ2 =

∫
(E −M1)2σ(E)dE/M0

= M2 −M
2
1 , (12)

is a measure of the width of the spectrum. Figure 12 shows
the results. One observes large variations. For all closed
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electronic shells, save N(e−) = 40, the spectral width has
a minimum. The value of δ is a measure of the total width
of the spectrum; it is dominantly given by the deformation
effects of the open shell clusters as given by equation (4).
It should be distinguished from the single line peak width
as defined by equation (3) and given in Figure 9 which is
discussed now.

6 Discussion of the width of the spectra

The width of a single line of the spectra has several ori-
gins. The main contributions are: 1) fragmentation of the
spectral width, which can only be calculated, 2) broad-
ening due thermal effects (see Ref. [22]), and 3) lifetime
effects as given by equation (5). How these different con-
tributions interact to give the total lineshape observed ex-
perimentally has so far never been studied theoretically.

6.1 Width of the bulk Mie plasmon

The dipolar response of a large sodium sphere can be cal-
culated from the experimental bulk dielectric function as
discussed in the context of equation (6). The calculated
width is Γ0 = 0.19 eV. This asymptotic “experimental”
width is due to a structure in the dielectric function which
is caused by an interband transition [49]. The collective
oscillation can decay by exciting a single electron to a
higher electronic band. The same mechanism occurs in
the damping of the bulk plasmon, where the width can
be well correlated with the strength of the pseudopoten-
tial (see Fig. 9 of Ref. [45]). If the width Γ0 were entirely
due to a lifetime effect, this would correspond according
to equation (5), to τ ≈ 3.5 fs.

The word “interband” is defined only for a crystalline
lattice. The question thus arises how this concept can be
generalized to a finite system. This is relatively simple for
the alkalis: In the bulk, the k-value of the interband tran-
sition is not so far from the edge of the Brillouin zone [49].
At the very edge of the Brillouin zone, an interband transi-
tion can be discussed in real space, namely that electronic
charge is taken from the position of the nuclei to positions
between the nuclei [49,50]. This concept can easily be ap-
plied to a finite system. Evidently, in a jellium type calcu-
lation this cannot occur. There are no atoms from which
the electrons could scatter and thus no band structure. It
is therefore plausible that all these calculations [9,11,33,
51–53] yield Γ0 = 0. A calculation using pseudopotentials
should be able to capture this point.

6.2 Scaling laws

The size dependence of the widths has been studied by sev-
eral theoretical groups [9,11,33,51–53]. The jellium model
was used nearly exclusively. In this case, the interband de-
cay of the plasmon discussed above is not possible, and the
collective plasmon oscillations can only decay by exciting
a single electron from the same band, a process which has

been termed Landau damping. For sufficiently large clus-
ters this gives a width like (Eq. 9.7 of Ref. [11]):

Γ = C1vFermi/R , (13)

where vFermi is the Fermi velocity (1.07 · 106 m/s for bulk
sodium), R the cluster radius and C1 a constant varying
for spherical clusters between 0.55 [31,54] and 0.75 [52]. In
the dipolar bulk limit one obtains a vanishing width from
equation (13), i.e. Γ (R→∞) = 0. From the bulk dielec-
tric function, on the other hand one calculates a width of
Γ0 = 0.19 eV. A better representation of the experimental
data might therefore be

Γ = Γ0 + C1vFermi/R . (14)

This equation has the expected size dependence and the
correct limit for arbitrarily large clusters. Our data point
to a value which is a factor of 3 to 5 smaller than given
by equation (14). We conclude from this discrepancy, that
if there is some applicability of equations (13) and (14)
to real clusters it becomes applicable only for larger ones
than studied here. Note, that if equations (13) and (14) are
valid, the width Γ has a maximum as a function of cluster
size. This has indeed been observed theoretically [53,55].

In the jellium model, clusters with a closed electronic
shell are perfect spheres. Experimentally, one cannot avoid
some surface roughness, which can have two origins: ther-
mal or geometric. Thermal line broadening has been
discussed elsewhere [22]. The thermally induced surface
roughness was recently calculated [56]. At 100 K one ob-
tains a rms roughness of about ∆ ≈ 0.4 Å. Converting this
to thermally induced width gives a value which is a little
high, but not too much. In the same spirit, one would
expect also a contribution from geometric disorder, i.e.
from atoms outside closed geometric shells. An alterna-
tive treatment is given by the random matrix model [57],
good agreement has been obtained for the width of Na+

21.
In principle, one would expect that all the broaden-

ing effects add up leading to rather broad lines which is
not observed experimentally. One has to conclude that a
detailed understanding of the line shapes of the plasmon
peaks is still missing.

6.3 Lifetime of the resonance

The linewidths of Figure 9 are 0.2 to 0.4 eV. According
to equation (5) this gives a lower limit for the lifetime
of 1.6 to 3.3 fs. One obtains only a lower limit, as non-
lifetime related broadening effects have not been corrected
for. There exists only one measurement of the lifetime for
a free sodium cluster ion which gives for the lifetime of
the collective resonance of Na+

93 a value of δt = 10 to 20
fs [58]. This would correspond to a lifetime broadening of
only Γ = 33 to 66 meV. As this is much smaller than the
total width one can conclude: 1) The lifetime contribution
to the plasmon linewidth is small (at least for Na+

93), and
2) the near Lorentzian shape of the single lines is not due
to a lifetime effect.
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There exist two studies of the plasmon lifetime of large
sodium clusters on a dielectric surface. One study obtains
a value of 10 to 15 fs, after correcting for the inhomoge-
neous broadening due to the experimentally unavoidable
cluster size distribution [59]. The other experiment obtains
a cluster-size-dependent lifetime of 2 to 10 fs, without per-
forming this correction [60].

7 Summary

The size dependence of the optical response has been mea-
sured for positively charged sodium cluster ions, Na+

n ,
4 ≤ n ≤ 64. A transition from single, molecular, Gaussian-
shaped resonances to collective, Lorentzian-shaped peaks
has been observed. Deformation of the open shell cluster
leads to a splitting into two or three peaks as predicted
by theory. The mean absorption energy and the polariz-
ability, which have been calculated by a moment analysis
of the spectra, show electronic shell closings as well as the
right tendency in the development toward the bulk val-
ues. No general size dependence of the peak width could
be observed. The width of the spectral lines as well as
the plasmon lifetimes have been discussed. Both are not
understood in detail so far.
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